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Abstract. We work out examples of tensor products for distinctq-generalizations of Euclidean,
oscillator ands`(2) type superalgebras in cases where the method of highest-weight vectors
will not apply. In particular, we use the three-term recurrence relations for Askey–Wilson
polynomials to decompose the tensor product of representations from the positive discrete series
and representations from the negative discrete series. We show that variousq-analogues of the
exponential function can be used to mimic the exponential mapping from a Lie algebra to its
Lie group and we compute the corresponding matrix elements of the ‘group operators’ on these
representation spaces. We show that the matrix elements themselves transform irreducibly under
the action of the quantum superalgebra. The most importantq-series identities derived here are
interpreted as the expansion of the matrix elements of a ‘group operator’ (via the exponential
mapping) in a tensor product basis in terms of the matrix elements in a reduced basis. They
involve q-hypergeometric series with base−q, 0< q < 1.

1. Introduction

Zhedanov and others have introduced a product of generalizeds`q(2) algebras that allows
one to take tensor products of representations corresponding to two distinct algebras
[7, 8, 28]. Their generalization is an algebra(v, u) with generatorsH , E+, E− which
obey the commutation relations

[H,E+] = E+ [H,E−] = −E− [E+, E−] = −uq−H − vqH . (1)

Here,u andv are real numbers and 0< q < 1. Foruv 6= 0 this algebra is isomorphic to
one of the trues`q(2) type algebras, foruv = 0, u2+ v2 > 0 it is isomorphic to a special
realization of theq-oscillator algebra, and foru = v = 0 it is isomorphic to the Euclidean
Lie algebram(2) [12]. This algebra has an invariant element

C = E+E− + vq
H − uq1−H

1− q . (2)

As pointed out by Zhedanov and others [7, 8, 28], the family of algebras admits a
multiplication (v, u)⊗ (−u, t) ∼= (v, t), defined by

F+ = 1(E+) = E+ ⊗ q 1
2H + q− 1

2H ⊗ E+
F− = 1(E−) = E− ⊗ q 1

2H + q− 1
2H ⊗ E−

L = 1(H) = H ⊗ I + I ⊗H.
(3)
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The operatorsF±, L satisfy the commutation relations (1). Using (3) we can easily define
the tensor productρ ⊗ µ of a representationρ of (v, u) and the representationµ of
(−u, t), thereby obtaining a representation of(v, t). This construction yields a convenient
generalization of the tensor product computations in, for example, [13–15]. We follow this
idea to study generalizations of theospq(1/2) algebra [3, 21, 23].

In this paper theq-superalgebra [v, u] is defined by the generatorsH,V± and the
relations

[H,V±] = ± 1
2V± {V+, V−} = −uq−2H − vq2H (4)

where [A,B] = AB − BA and {A,B} = AB + BA. Here u, v are parameters. The
‘Casimir’ operatorC for [v, u] is

C = V+V− + v

1+ q q
2H + u

1+ q−1
q−2H (5)

and satisfies the relations

[H,C] = 0 {V±, C} = 0. (6)

Note thatC2 is an invariant operator, i.e.C2 commutes with all elements of the [v, u]
algebra.

We define the coproduct

L = 1(H) = H ⊗ I + I ⊗H
F± = 1(V±) = V± ⊗ qH + q−H ⊗ V±

(7)

where

(A⊗ B)(C ⊗D) = (−1)p(B)p(C)AC ⊗ BD. (8)

Herep(A) is the parity of the operatorA. In this case the bosonic variablesH, qH have
parity 0 and the fermionic variablesV± have parity 1 [2, 21]. It follows that this algebra
admits a multiplication of the form

[v, u] ⊗ [−u, t ] = [v, t ] (9)

where the first factor corresponds to the algebra [v, u] and the second factor to algebra
[−u, t ]. Indeed the relations

[L,F±] = ± 1
2F± {F+, F−} = −tq−2L − vq2L (10)

are satisfied. The only non-trivial part of the proof is

{F−, F+} = (−uq−2H − vq2H )⊗ q2H + q−2H ⊗ (−tq−2H + uq2H )

= −tq−2H ⊗ q−2H − vq2H ⊗ q2H = −tq−2L − vq2L.

In sections 2 and 3 we study irreducible representations of the ‘Euclidean’ algebra [0, 0]
and work out the (non-unique) tensor product decomposition for

[0, 0]⊗ [0, 0] ∼= [0, 0].

We compute the Clebsch–Gordan coefficients for the expansion and use them to derive
q-series identities for the special functions that appear naturally in the theory. They are
interpreted here as expansions of the matrix elements of a ‘group operator’ in a tensor
product basis in terms of the matrix elements in a reduced basis. Theq-series are base
−q, as follows naturally from expressions (7). In section 4 we carry out the analogous
constructions for positive discrete series representations of the general algebra [v, u] for
v2 + u2 > 0 tensored with negative discrete series representations. Here our methods lead
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naturally to a three-term recurrence relation for the Clebsch–Gordan coefficients that can be
solved through comparison with the recurrence relation with Askey–Wilson polynomials.
This yields the measure (not necessarily positive) determining the decomposition of the
tensor product into irreducible components.

The notation used forq-series in this paper follows that of Gasper and Rahman [6].

2. Euclideanq-superalgebra representations

The three dimensionalq-supersymmetric Lie algebra [0, 0] is determined by its generators
H , V+, V− which obey the relations

[H,V±] = ±V± {V+, V−} = 0. (11)

We consider an analogy(ω) of the infinite dimensional irreducible representations of the
Euclidean Lie algebra, characterized by the non-zero complex numberω The spectrum of
H corresponding to(ω) is the setS = {n/2 : n ∈ Z} and the complex representation space
has basis vectorsfm, m ∈ S, such that

V+fm = ωfm+1 V−fm = (−1)mωfm−1 Hfm = m

2
fm (12)

whereC ≡ V+V− is the ‘Casimir’ operator, withCfm = (−1)mω2fm. Note that the
representations(ω) and(−ω) are equivalent.

A simple realization of(ω) is given by the operators

H = 1

2
z

d

dz
V+ = ωz V− = ω

z
Rz (13)

acting on the space of all linear combinations of the functionszn, z a complex variable,
n ∈ Z, with basis vectorsfm(z) = zm. Here, the operatorRz acts on functionsf (z) to give
Rzf (z) = f (−z). Note that

qH = T 1/2
z where T αz f (z) = f (qαz).

We can introduce an inner product on the dense subspace of all finite linear combinations
of the basis vectors, such that〈fn, fn′ 〉 = δnn′ , n, n′ ∈ Z. This induces the representation
(ω)∗ of [0, 0], adjoint to(ω), defined by the operatorsV ′± = V ∗∓, H ′ = H = H ∗ such that

V ′+fm = (−1)m+1ωfm+1 V ′−fm = ωfm−1 H ′fm = m

2
fm. (14)

For ω real, this meansV ′+ = (−1)2HV+, V ′− = V−(−1)2H .
In terms of the operators (13) we can obtain a realization of(ω) and its Hilbert space

structure by settingz = eiθ :

H = − i
2

d

dθ
V+ = ωeiθ V− = ωe−iθRz

fn(z) = einθ 〈f, f ′〉 = 1

2π

∫ 2π

0
f (eiθ )f ′(eiθ ) dθ.

(15)

With the q-analogues of the exponential function

eq(x) =
∞∑
k=0

xk

(q; q)k =
1

(x; q)∞ |x| < 1

Eq(x) =
∞∑
k=0

qk(k−1)/2xk

(q; q)k = (−x; q)∞
(16)
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we employ the model (13) to define the followingq-analogues of matrix elements of(ω):

(a) e−q(βV+)E−q(αV−)fn =
∞∑

n′=−∞
T
(e+,E−)
n′n (α, β)fn′ |ωβ| < 1 (17)

(b) E−q(βV+)e−q(αV−)fn =
∞∑

n′=−∞
T
(E+,e−)
n′n (α, β)fn′ |ωα| < 1. (18)

(c) e−q(βV−)E−q(αV+)fn =
∞∑

n′=−∞
T
(e−,E+)
n′n (α, β)fn′ |ωβ| < 1 (19)

(d) E−q(βV−)e−q(αV+)fn =
∞∑

n′=−∞
T
(E−,e+)
n′n (α, β)fn′ |ωα| < 1 (20)

where 0< q < 1 andα, β ∈ /C. (Here,α, β arenot fermionic variables which is the usual
choice in defining the action of supersymmetric groups [20, 25].) The motivation for the
choice of base−q comes from the relations

(V± ⊗ qH )(q−H ⊗ V±) = −q±1(q−H ⊗ V±)(V± ⊗ qH ) (21)

and the well known property that ifX and Y are linear operators such thatYX = pXY

then [6, page 28]

(Y +X)k =
k∑
`=0

(p;p)k
(p;p)`(p;p)k−` X

`Y k−`

ep(X + Y ) = ep(X)ep(Y ) Ep(X + Y ) = Ep(Y )Ep(X).
(22)

SinceV ∗+ = V ′−, V ∗− = V ′+ we have

T
(e±,E∓)
n′n (α, β) = T ′(E±,e∓)nn′ (β, α). (23)

T
(E±,e∓)
n′n (α, β) = T ′(e±,E∓)nn′ (β, α). (24)

Furthermore, sincee−q(x)E−q(−x) = 1, we have the identities
∞∑

`=−∞
T
(e−,E+)
n` (α, β)T

(e+,E−)
`n′ (−β,−α) = δnn′ |ωα|, |ωβ| < 1 (25)

∞∑
`=−∞

T
(E+,e−)
n` (α, β)T

(E−,e+)
`n′ (−β,−α) = δnn′ |ωα|, |ωβ| < 1. (26)

(Note that our operator derivations of these formulae and of some formulae to follow lead
automatically to formal power series identities in the ‘group parameters’. These identities
must then be examined case by case to determine when the series are convergent as analytic
functions of the group parameters.) Using the model (13) to treat (17)–(20) as generating
functions for the matrix elements and computing the coefficients ofzn

′
in the resulting

expressions we obtain the explicit results(p = −q):

T
(e+,E−)
n′n (α, β) = (βω)n

′−n

(p;p)n′−n

[
1φ1

(
0

pn
′−n+1 ;p, (−1)n+1iαβω2

)
1− i

2

+ 1φ1

(
0

pn
′−n+1 ;p, (−1)niαβω2

)
1+ i

2

]
(27)
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T
(E+,e−)
n′n (α, β) = (βω)n

′−np(n
′−n)(n′−n−1)/2

(p;p)n′−n

×
[

1φ1

(
0

pn
′−n+1 ;p, (−1)n+1pn

′−niαβω2

)
1− i

2

+ 1φ1

(
0

pn
′−n+1 ;p, (−1)npn

′−niαβω2

)
1+ i

2

]
(28)

T
(e−,E+)
n′n (α, β) = (αω)n

′−np(n
′−n)(n′−n−1)/2

(p;p)n′−n

[
1φ1

(
0

pn
′−n+1 ;p, (−1)n

′
pn
′−niαβω2

)
1− i

2

+ 1φ1

(
0

pn
′−n+1 ;p, (−1)n

′+1pn
′−niαβω2

)
1+ i

2

]
(29)

T
(E−,e+)
n′n (α, β) = (αω)n

′−n

(p;p)n′−n

[
1φ1

(
0

pn
′−n+1 ;p, (−1)n

′
iαβω2

)
1− i

2

+ 1φ1

(
0

pn
′−n+1 ;p, (−1)n

′+1iαβω2

)
1+ i

2

]
. (30)

Here we have made use of the identity

(−1)n(n−1)/2 = 1− i
2

(i)n + 1+ i
2

(−i)n. (31)

These results make sense forn > n′ as well asn′ > n. Indeed, fork > 0 we have

lim
m→−k

1

(p;p)m 1φ1

(
0

pm+1 ;p,B
)
= pk(k−1)/2(−B)k

(p;p)k 1φ1

(
0

pk+1 ;p, pkB
)
. (32)

The matrix elementsTn′n(α, β) themselves define models of the representations(ω). We
can see this directly from (11). For example, it is a simple consequence of these relations
andep(x) = (x;p)−1

∞ , Ep(x) = (−x;p)∞ that

ep(βV+)Ep(αV−)V+ = 1

β
(I − Tβ)Rαep(βV+)Ep(αV−) (33)

ep(βV+)Ep(αV−)V− = p

α
(T −1
α − I )ep(βV+)Ep(αV−) (34)

whereI is the identity operator andTβg(α, β) = g(α, βp), Rαg(α, β) = g(−α, β) for a
function g(α, β). Thus

ωT
(e+,E−)
n′,n+1 (α, β) = 〈ep(βV+)Ep(αV−)V+fn, fn′ 〉

= 1

β
(I − Tβ)RαT (e+,E−)n′n (α, β) (35)

(−1)nωT (e+,E−)n′,n−1 (α, β) = p

α
(T −1
α − I )T (e+,E−)n′n (α, β). (36)

Furthermore, induction with respect tok + ` yields [H,α`βkV k+V
`
−] = 1

2(k − `)α`βkV k+V `−
and this implies

[H, ep(βV+)Ep(αV−)] = 1
2(β∂β − α∂α)ep(βV+)Ep(αV−)
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so

1
2(n
′ − n)T (e+,E−)n′n (α, β)

= 〈ep(βV+)Ep(αV−)fn,Hfn′ 〉 − 〈ep(βV+)Ep(αV−)Hfn, fn′ 〉

= 〈[H, ep(βV+)ep(αV−)]fn, fn′ 〉 = 1
2(β∂β − α∂α)T (e+,E−)n′n (α, β). (37)

Thus, the operators

Ṽ+ = 1

β
(I − Tβ)Rα Ṽ− = p

α
(T −1
α − I ) H̃ = 1

2
(α∂α − β∂β)+ n

′

2

and the basis functionsfn = T
(e+,E−)
n′n define a two-variable realization of relations (11),

hence, a realization of the representation(ω). Similar considerations apply to all of the
matrix elementsT (e±,E∓)n′n , T (E±,e∓)n′n , as well as toT (e±,e∓)n′n , T (E±,E∓)n′n [16].

3. Tensor products of Euclideanq-superalgebra representations

We study the tensor product of two irreducible representations(ω1) and (ω2) of [0, 0] in
which the coproduct is (7):

L = 1(H) = H ⊗ I + I ⊗H F± = 1(V±) = V± ⊗ qH + q−H ⊗ V±.
The operatorsF±, L satisfy the same relations as the operatorsV±, H :

[L,F±] = ± 1
2F± {F+, F−} = 0. (38)

Each irreducible representation(ω1), (ω2) is defined onL2[0, 2π ] by the prescription (15).
To make sense of the operators (7) on a dense subspace of the tensor product space
L[0, 2π ] ⊗ L[0, 2π ] we proceed as follows. The Hilbert space inner product is

〈f, g〉 = 1

(2π)2

∫ 2π

0

∫ 2π

0
f (θ1, θ2)g(θ1, θ2) dθ1 dθ2.

An orthonormal basis is{fn1n2 = ei(n1θ1+n2θ2), nj = 0,±1,±2, . . .}. Using (13) we define
the coproduct operators as

F+ = ω1z1T
1
2

2 + ω2z2T
− 1

2
1 F− = ω1

z1
R1T

1
2

2 +
ω2

z2
R2T

− 1
2

1

L = 1

2
z1

d

dz1
+ 1

2
z2

d

dz2

(39)

whereRj = Rzj , Tj = Tzj , andzj = eiθj . In order to satisfy relations (38) we require that
z1z2 = −z2z1, i.e. that the variablesz1, z2 anticommute.

Thus, if f satisfies

F+F−f = λf Lf = h

2
f (40)

it should have the formf [z, t ] = thgh[z] where

(ω1+ ω2zq
1/2(−q− 1

2 )h)

(
ω1(−1)h + ω2(−q− 1

2 )h)

zq1/2

)
gh[−zq] = λgh[z]

andz = z2z
−1
1 , t = z1. Note thatzt = −tz.
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Just as in [16], there is an infinite parameter family of bases associated with the
eigenvalue problem. We shall focus on those two that are the simplest in structure. The
first corresponds to the basis of eigenvectorsf

(1)
kh = thg(1)h [z]

g
(1)
h [z] = ihk ((−1)h+1q(1−h)/2ω2z/ω1;−q)∞

(q(1−h)/2ω2/ω1z;−q)∞ zk k = 0,±1, . . .

with eigenvaluesλ(1)k = ω2
1(−q)k(−1)h. The second has a basis of eigenvectors

g
(2)
h [z] = ihk (−q(1+h)/2ω1z/ω2;−q)∞

((−1)hq(1+h)/2ω1/ω2z;−q)∞z
h+k k = 0,±1, . . .

with eigenvaluesλ(2)h = ω2
2(−q)k(−1)h. Settingf (j)kh [z, t ] = g(j)h [z]th, j = 1, 2, we have

F+f
(j)

kh = ωj(−iq1/2)kf
(j)

k,h+1 (41)

F−f
(j)

kh = ωj(−iq1/2)k(−1)hf (j)k,h−1 (42)

Lf
(j)

kh =
h

2
f
(j)

kh Cf
(j)

kh = ω2
j (−q)k(−1)hf (j)kh . (43)

Thus

(ω1)⊗jq (ω2) ≡
∞∑

k=−∞
⊕(ωj (iq)k/2)

i.e. in each case the tensor product decomposes into a direct sum of irreducible
representations.

In a similar manner we can use the adjoint operators to (39) and compute the resolution
of the tensor product representation of the factors:

F ′+ = −ω1z1R1T
1
2

2 − ω2z2R2T
− 1

2
1 F ′− =

ω1

z1
T

1
2

2 +
ω2

z2
T
− 1

2
1

L′ = 1

2
z1

d

dz1
+ 1

2
z2

d

dz2
.

(44)

If f ′ satisfies

F ′+F
′
−f
′ = λ′f ′ L′f ′ = h

2
f ′ (45)

it should have the formf ′[z, t ] = thg′h[z] where

(ω1− ω2zq
1/2(−q− 1

2 )h)

(
ω1(−1)h − ω2(q

− 1
2 )h)

zq1/2

)
g′h[−zq] = λg′h[z]

andz = z2z
−1
1 , t = z1.

Again there is an infinite parameter family of bases associated with the eigenvalue
problem, but two have the simplest structure. The first corresponds to the basis of
eigenvectorsf ′(1)kh = thg′(1)h [z]:

g′(1)h [z] = ihk (q(1−h)/2ω2z/ω1;−q)∞
((−1)h+1q(1−h)/2ω2/ω1z;−q)∞z

k k = 0,±1, . . .

with eigenvaluesλ′(1)k = ω1
2(−q)k(−1)h. The second has a basis of eigenvectors

g′(2)h [z] = ihk ((−1)h+1q(1+h)/2ω1z/ω2;−q)∞
(q(1+h)/2ω1/ω2z;−q)∞ zh+k k = 0,±1, . . .
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with eigenvaluesλ′(2)h = ω2
2(−q)k(−1)h. Settingf ′(j)kh [z, t ] = g′(j)h [z]th, j = 1, 2, we have

F ′+f
′(j)
kh = ωj(iq1/2)k(−1)h+1f ′(j)k,h+1 (46)

F ′−f
′(j)
kh = ωj(iq1/2)kf ′(j)k,h−1 (47)

L′f ′(j)kh =
h

2
f ′(j)kh Cf ′(j)kh = ωj 2(−q)k(−1)hf ′(j)kh . (48)

Thus

(ω1)
′ ⊗jq (ω2)

′ ≡
∞∑

k=−∞
⊕(ωj (iq)k/2)′.

The functions{f ′(j)k′h′ } form dual bases for the functions{f (j)kh }, j = 1, 2. In particular,
the biorthogonality relations

〈f (j)kh , f
′(j)
k′h′ 〉 = δkk′δhh′ (49)

are satisfied.
The Clebsch–Gordan coefficients for the tensor product corresponding to the spectral

resolution (3) are defined by

f
(1)
kh [z, t ] = f (1)kh (θ1, θ2) =

∞∑
n1,n2=−∞

[
ω1 ω2 k

n1 n2 h

](1)
f ω1
n1
(eiθ1)⊗1

q f
ω2
n2
(eiθ2). (50)

Clearly, these coefficients vanish unlessh = n1 + n2. Note that the tensor product basis is
z
n1
1 z

n2
2 = (−1)n2(n2+1)/2tn1+n2zn2. There is a similar expansion for the dual basis:

f ′(1)kh [z, t ] = f ′(1)kh (θ1, θ2) =
∞∑

n1,n2=−∞

[
ω1 ω2 k

n1 n2 h

]′(1)
f ω1
n1
(eiθ1)⊗1

q f
ω2
n2
(eiθ2). (51)

The biorthogonality of the two bases implies the identities∑
n1,n2

[
ω1 ω2 k

n1 n2 h

]∗(1) [
ω1 ω2 k′

n1 n2 h

]′(1)
= δkk′

∑
k

[
ω1 ω2 k

n1 n2 h

]∗(1) [
ω1 ω2 k

n′1 n′2 h

]′(1)
= δn1n

′
1

wheren1+ n2 = n′1+ n′2 = h anda∗ is the complex conjugate ofa. Explicitly[
ω1 ω2 k

n1 n2 h

](1)
(−1)n2(n2+1)/2(−i)hk

= ((−1)hak)n2−kp(n2−k)(n2−k−1)/2

(p;p)n2−k
1φ1

(
0

pn2−k+1 ;p; (−1)h+1a2
kp

n2−k
)

−
sh−1∑
`=0

(p`a2
h;p)∞p`(`−1)/2(−q`ah)k−n2(−1)`

(p;p)∞(p;p)` (52)

wherep = −q,h = n1 + n2, ah = q(1−h)/2ω2/ω1 and sh > 0 is the smallest integer such
thatqshah < 1. (We assume thatah 6= qn for any integern.) Indeed the casesh = 0 of (52)
follows from (50) and this result can be written as a complex contour integral. The case
sh > 0 can be obtained from this result by shifting the contour.
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Similarly the Clebsch–Gordan coefficients for the tensor product corresponding to
the first dual basis are given explicitly by (52), whereah is now replaced bya′h =
(−1)h+1q(1−h)/2ω2/ω1.

With respect to the tensor product basis{f ω1
n1
⊗f ω2

n2
} the operatoreq(βF+)Eq(αF−) has

matrix elements

Tm1m2;n1n2(α, β) = 〈ep(β1(V+))Ep(α1(V−))f ω1
n1
⊗ f ω2

n2
, f ω1

m1
⊗ f ω2

m2
〉

= 1
2

[
T (e+,E−)m1n1

(
αqm2, βqm2

)
T (e+,E−)m2n2

(
αp−n1, βp−n1

)
+ T (e+,E−)m1n1

(
αqm2, βqm2

)
T (e+,E−)m2n2

(
αp−n1,−βp−n1

)
+ T (e+,E−)m1n1

(−αqm2, βqm2
)
T (e+,E−)m2n2

(
αp−n1, βp−n1

)
− T (e+,E−)m1n1

(−αqm2, βqm2
)
T (e+,E−)m2n2

(
αp−n1,−βp−n1

)]
. (53)

Indeed

ep(βF+)Ep(αF−) = ep(βV+ ⊗ qH )ep(βq−H ⊗ V+)Ep(αV− ⊗ qH )Ep(αq−H ⊗ V−)

= 1
2ep(βV+ ⊗ qH )

(
Ep(B)ep(A)+ Ep(B)ep(−A)+ Ep(−B)ep(A)

−Ep(−B)ep(−A)
)
Ep(αq

−H ⊗ V−) (54)

whereB = αV− ⊗ qH , A = βq−H ⊗ V+, AB = −BA, and we have used the identity

(−1)mn = 1
2(1+ (−1)m + (−1)n − (−1)m+n). (55)

From the definition of the Clebsch–Gordan coefficients we see immediately that the
identities

Tm1m2;n1n2(α, β) =
∞∑

k=−∞

[
ω1 ω2 k

n1 n2 n1+ n2

]′(j)∗
T
(e+,E−),ωj (iq)k/2
m1+m2,n1+n2

(α, β)

×
[
ω1 ω2 k

m1 m2 m1+m2

](j)
j = 1, 2 (56)

must hold.

4. Representations of theq-supersymmetric algebras[v,u]

We consider the family of algebraically irreducible representations (bounded below)↑λ,
of the q-superalgebra [−u, t ], where t > 0, uq−4λ,−uq−4λ, defined as follows [4]. A
convenient orthonormal basis for the representation space is{en : n = 0, 1, . . .} where

V−en =
[
(1− pn)(tq2λ−n+1+ u(−1)nq−2λ)

1+ q
] 1

2

en−1

V+en = −
[
(1− pn+1)(tq2λ−n − u(−1)nq−2λ)

1+ q
] 1

2

en+1

Hen = (−λ+ 1
2n)en.

(57)
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We haveV+ = −(V−)∗ andH ∗ = H . The ‘Casimir’ operator (5) has the action

Cen = (−1)nµen µ = −uq
2λ

1+ q +
tq−2λ

1+ q−1
. (58)

Note thatC2 = µ2I is a multiple of the identity operator.
In analogy with [4], we define the followingq-analogue of matrix elements of↑λ:

e−q(βV−)E−q(αV+)fn =
∞∑
n′=0

T
(e−,E+)
n′n (α, β)fn′ |q2λ−nαβt/(1+ q)| < 1 (59)

where 0< q < 1 andα, β ∈ /C. Again the motivation for the choice of base−q comes
from the relations

(V± ⊗ qH )(q−H ⊗ V±) = −q±1(q−H ⊗ V±)(V± ⊗ qH )
relevant for the coproduct. Subject only to the conditions on (59), the left-hand side of this
expression is an analytic function ofz, convergent in a neighbourhood ofz = 0. Note that

〈T en, en′ 〉 = Tn′n. (60)

Since the ‘group’ operators that we are considering are unbounded, it is not clear that
relation (60) makes more than formal sense. However, by truncating the operator power
series expressions forep(αV−), Ep(βV+) atN terms, we see that (60) holds rigorously for
the truncated series. The final result follows in the limit asN →∞.

Using the model in [4] to compute the matrix elements (which are model independent)
we obtain the explicit result

T
(e−,E+)
n′n (α, β) = (−1)(n

′−n)(n′−n+1)/2

√
(p;p)n′((u/t)q−4λ;p)n
(p;p)n((u/t)q−4λ;p)n′

× (
√

t

1+ q α)
n′−nq(n

′−n)(7λ+n′−3n−1)/4 (
(−1)nu
t
qn−4λ;p)n′−n

(p;p)n′−n

× 2φ1

(
pn
′+1,

u

t
(−1)nqn

′−4λ

pn
′−n+1

;p; (−1)n−n
′+1αβt

qn−2λ(1+ q)

)
(61)

where|q2λ−nαβt/(1+ q)| < 1.
These results make sense forn > n′ as well asn′ > n. Indeed, fork > 0 we have

lim
m→−k

1

(p;p)m 2φ1

(
A B

pm+1 ;p,C
)
= (A,B;p)kCk

(p;p)k 2φ1

(
Apk Bpk

pk+1 ;p,C
)
. (62)

We also consider a second family of algebraically irreducible representations (bounded
above)↓ξ , of the q-superalgebra [v, u], wherev > 0, uq4ξ−1,−uq4ξ , defined as follows.
A convenient orthonormal basis for the representation space is{jm : m = 0, 1, . . .} where

V−jm = (−1)m+1

[
(1− pm+1)(vq−2ξ−m + u(−1)mq2ξ )

1+ q
] 1

2

jm+1

V+jm = (−1)m+1

[
(1− pm)(vq−2ξ−m+1− u(−1)mq2ξ )

1+ q
] 1

2

jm−1

Hjm = (−ξ − 1
2m)jm.

(63)

We haveV+ = −(V−)∗ andH ∗ = H .



Tensor products of q-superalgebra representations 7157

For this representation we consider the matrix elements

(e−, E+) : ep(βV−)Ep(αV+)jm =
∑
m′
S
(ξ)

m′m(α, β)jm′ .

S
(ξ)

m′m(α, β) = βm
′−mq(m

′−m)(−4ξ−m′−m+1)/4 ((−u/v)pmq4ξ ;p)m′−m
(p;p)m′−m

× (−1)(m
′−m)(m′+m+1)/2

√(
v

1+ q
)m′−m

(p;p)m′(−(u/v)q4ξ ;p)m
(p;p)m(−(u/v)q4ξ ;p)m′ (64)

×
[

1− i
2

2φ1

(
p−m, (v/u)q−4ξ+1p−m

pm
′−m+1 ;p; −αβiu

q−2ξ−m(1+ q)
)

+ 1+ i
2

2φ1

(
p−m, (v/u)q−4ξ+1p−m

pm
′−m+1 ;p; αβiu

q−2ξ−m(1+ q)
)]
.

Now we form the tensor product representation

↓ξ [v, u]⊗ ↑λ [−u, t ] ∼= [v, t ] (65)

of [v, t ]. Rather than define the operators determining the tensor product in the form (7),
we will use the equivalent definition

F± = V± ⊗ qH + (−1)2H
′
q−H ⊗ V± L = H ⊗ I + I ⊗H (66)

where now

(A⊗ B)jm ⊗ en = Ajm ⊗ Ben 2H ′jm = (−1)mjm. (67)

With this definition the variables commute in our functional models. The invariant operator
is

C = F+F− + v

1+ q q
2L + t

1+ q−1
q−2L.

To decompose this representation we compute the common eigenfunctions ofL andC.
Clearly, eigenfunctions ofL with eigenvalue−λ − ξ + α, α > 0 are just those linear
combinations of the basis vectorsJ αm = jm ⊗ en where n = 2α + m, m = 0, 1, . . . ..
For α < 0, they are linear combinations of the basis vectorsJ αm = jm ⊗ en where
n = 2α + m, n = 0, 1, . . . . Taking the caseα > 0 and applyingC to the ON set
{J αm} we find

− (1+ q)√
tvq

CJαm =
[
(1− pm+1)(1− p2α+m+1)

(
1+ u

v
pmq4ξ

)

×
(

1− u
t
(−1)2αq−4λ+2αpm

)] 1
2

J αm+1

+
[
(1− pm)(1− p2α+m)

(
1+ u

v
pm−1q4ξ

)(
1+ u

t
pm+2αq−4λ−1

)] 1
2

J αm−1

− 1√
vt

{
tq2λ+2ξ−2α− 1

2 + vq−2ξ−2λ+2α− 1
2

− q−2λ+2α− 1
2 (1− pm+1)(vq−2ξ + upmq2ξ )

−q2ξ− 1
2 (1− pm+2α)(tq2λ−2α + u(−1)2αpmq−2λ)

}
J αm. (68)
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The operatorC is self-adjoint. If we introduce the spectral transform of this operator so that
C corresponds to multiplication by the transform variablex, then (68) takes the form of a
three-term recurrence relation for orthogonal polynomialsJ αm(x) of orderm in x. Indeed,
comparing (68) with the three-term recurrence relation for the continuous Askey–Wilson
polynomials [6, page 173]

pm(x) ≡ pm(x; a, b, c, d|Q)

= (ab, ac, ad;Q)ma−m4φ3

(
Q−m, abcdQm−1, aeiθ , ae−iθ

ab, ac, ad
;Q,Q

)
(69)

we get a match withQ = p

a =
√
vq

t
q−2λ−2ξ+2α b = −

√
tq

v
q2λ+2ξ (−1)2α c = u√

vtq
q−2λ+2ξ (−1)2α

d = 0, andC ∼ −2x
√
vtq/(1+ q). Making the identification

J αm(x, s) =
[
(pm+1,abpm,acpm,bcpm;p)∞

2π

] 1
2
pm(x; a, b, c,0)s2α(√

v
t
q−2λ−2ξ+2α+ 1

2 eiθ ,−
√

t
v
q2λ+2ξ+ 1

2 (−1)2αeiθ , u√
vt
q−2λ+2ξ− 1

2 (−1)2αeiθ ;p
)
∞

= Kα
m(x)s

2α (70)

wheres = eiφ and x = cosθ , we can verify that (68) holds, as well as the orthogonality
relations
〈J αm, J α

′
m′ 〉 = δm,m′δα,α′

〈f, g〉 = 1

2π

∫ 1

−1
ρ(x) dx

∫ 2π

0
dφ f (x, s)g(x, s)

ρ(x) = (1− x2)−
1
2

(
eiθ , e−iθ ,−eiθ ,−e−iθ , p

1
2 eiθ , p

1
2 e−iθ ,−p 1

2 eiθ ,−p 1
2 e−iθ ;p

)
∞
.

(71)

For α = −β, β = 0, 1, . . ., the expression forJ αm(x, s) can be obtained by analytic
continuation and a standard limiting procedure, analogous to (62).

It is straightforward, though tedious, to verify that in terms of the new variables
r = eiθ , s the action of the operatorsF±, L is

F+ = s√
1+ q

(
−√tqλ+ξ T −1/2

s −√vrq−ξ−λ+ 1
2T 1/2
s

)
Rr

F− = 1

s
√

1+ q
(√

tqλ+ξ+
1
2T −1/2
s −

√
v

r
qξ−λT 1/2

s

)
Rr

L = −ξ − λ+ 1

2
s
∂

∂s
C = −

√
vtq

1+ q
(
r + 1

r

)
.

(72)

Here,Rrg(r) = g(−r).
Applying these operators to the basisf ±x0

h (x, s) = (sh/√ρ(x))δ(x ∓ x0), we see that
the algebra action becomes

F+f
±x0
h = 1√

1+ q
(
−√tqλ+ξ−h/2−√vrq−ξ−λ+(h+1)/2

)
f
∓x0
h+1

F−f
±x0
h = 1√

1+ q
(√

tqλ+ξ+(1−h)/2−
√
v

r
qξ−λ+h/2

)
f
∓x0
h−1

Lf
±x0
h =

(
− ξ − λ+ h

2

)
f
±x0
h C = ∓2x0

√
vtq

1+ q

(73)
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for x0 > 0. Thus the algebra action preserves|x| and decomposes the representation space
for fixed |x| = x0 into the direct sum of two irreducible representations. The basis vector
f xh belongs to the space of the irreducible representation(λ + ξ, |x|) if (−1)hx > 0, and
to the space of the irreducible representation(λ+ ξ,−|x|) if (−1)hx < 0. (We ignore the
measure 0 casex = 0).

For the reduced tensor product we consider the matrix elements

(e−, E+) : ep(βF−)Ep(αF+)f xh =
∑
h′
U
(−1)h+h′x
h′h (α, β)f

(−1)h+h′x
h′ (74)

Ux
h′h(α, β) =

(
β
√
v

r
√

1+ q
)h−h′

q(h−h
′)(h+h′+1)/4 (−1)(h−h

′)(h−h′+1)/2

qµ(h−h′)(p;p)h−h′

×
(
(−1)1−h

′
√
t

v
rq2µ+ 1

2p−h;p
)
h−h′

×
1− i

2
2φ1

 (−1)h
′

r

√
vq

t
q−2µph, (−1)h

′
√
vq

t
rq−2µph

ph−h
′+1

;p; −αβq
2µit

qh(1+ q)



+ 1+ i
2

2φ1

 (−1)h
′

r

√
vq

t
q−2µph, (−1)h

′
√
vq

t
rq−2µph

ph−h
′+1

;p; αβq
2µit

qh(1+ q)


(75)

whereµ = λ+ ξ andx = (r + r−1)/2.
Comparing (66), (71), (73), we have proved the direct integral decomposition

↓ξ [v, u]⊗ ↑λ [−u, t ] ∼=
∫ 1

0
ρ(x) {(λ+ ξ, x)⊕ (λ+ ξ,−x)} dx. (76)

The functions J h/2m (x, s) are, essentially, the Clebsch–Gordan coefficients for this
decomposition; the orthogonality and completeness relations for the corresponding Askey–
Wilson polynomials are the unitarity conditions for the CG coefficients.

The decomposition (76) can be used to obtain an identity relating the matrix elements
(61), (64) and (75). We can compute the matrix element

Tm′n′,mn(α, β) = 〈ep(βF−)Ep(αF+)jm ⊗ en, jm′ ⊗ en′ 〉
in two different ways. On one hand we have the integral representation

Tm′n′,mn(α, β) = 〈ep(βF−)Ep(αF+)J h/2m , J
h′/2
m′ 〉

= 〈U(·)
h′h(α, β)K

h/2
m ((−1)h+h

′ ·),Kh′/2
m′ (·)〉 (77)

whereJ h/2m (x, s) = K
h/2
m (x)sh, andn = h + m, n′ = h′ + m′. On the other hand, from

relations (7), (22) and (55) we have the formal identity

ep(βF−)Ep(αF+) = ep(βV− ⊗ qH )ep(βq−H ⊗ V−)Ep(αV+ ⊗ qH )Ep(αq−H ⊗ V+)

= 1
2ep(βV− ⊗ qH )

(
Ep(B)ep(A)+ Ep(B)ep(−A)

+Ep(−B)ep(A)− Ep(−B)ep(−A)
)
Ep(αq

−H ⊗ V+) (78)
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whereB = αV+ ⊗ qH , A = βq−H ⊗ V−, AB = −BA. Thus

2Tm′n′,mn(α, β) = S(ξ)m′m(αq−λ+n
′/2, βq−λ+n

′/2)T
(e−,E+),λ
n′n (α(−1)mqξ+m/2, β(−1)mqξ+m/2)

+ S(ξ)m′m(αq−λ+n
′/2, βq−λ+n

′/2)T
(e−,E+),λ
n′n (α(−1)mqξ+m/2,−β(−1)mqξ+m/2)

+ S(ξ)m′m(−αq−λ+n
′/2, βq−λ+n

′/2)T
(e−,E+),λ
n′n (α(−1)mqξ+m/2, β(−1)mqξ+m/2)

− S(ξ)m′m(−αq−λ+n
′/2, βq−λ+n

′/2)T
(e−,E+),λ
n′n (α(−1)mqξ+m/2,−β(−1)mqξ+m/2)

(79)

where the functionsTn′m′,nm(α, β) are the matrix elements of the operatorep(βF−)Ep(αF+)
in the tensor product basis{jm ⊗ en}.

Next we consider a degenerate case of the tensor product with some special features,
a representation of theq-supereuclidean algebra [0, 0] of the form↓′ξ [0, u]⊗ ↑′λ [−u, 0].
Here the family of algebraically irreducible representations (bounded below)↑′λ, of the
q-superalgebra [−u, 0], whereu > 0, is defined as follows. An orthogonal basis for the
representation space is{en : n = 0, 1, . . .} where

V−en =
[
(1− pn)uq−2λ

1+ q
] 1

2

en−1 Hen =
(
− λ+ n

2

)
en

V+en =
[
(1− pn+1)uq−2λ

1+ q
] 1

2

(−1)nen+1.

(80)

The representation space is a Hilbert space with indefinite inner product. Indeed

〈en, en′ 〉 = δnn′(−1)n(n−1)/2 n, n′ = 0, 1, . . . (81)

andV+ = (V−)∗, H ∗ = H . We defineH ′ = λI +H .
The following matrix elements of↑′λ:

e−q(βV−)E−q(αV+)en =
∞∑
n′=0

T ′(e−,E+)n′n (α, β)en′ (82)

are given by

T ′(e−,E+)n′n (α, β) = q 1
2 (n
′−n)(n′+n−1)αn

′−n
(
uq−2λ

1+ q
) 1

2 (n
′−n)√

(pn+1;p)n′−n
(p;p)n′−n

×
[

1− i
2

1φ1

(
pn
′+1

pn
′−n+1

;p; −iq
n′αβu

pnq2λ(1+ q)

)

+ 1+ i
2

1φ1

(
pn
′+1

pn
′−n+1

;p; iqn
′
αβu

pnq2λ(1+ q)

)]
. (83)

Here

〈T ′en, en′ 〉 = T ′n′n(−1)n(n−1)/2. (84)

We also consider a second family of algebraically irreducible representations (bounded
above)↓′ξ , of the q-superalgebra [0, u], whereu > 0, defined as follows. A convenient
orthogonal basis for the representation space with indefinite inner product is{jm : m =
0, 1, . . .} where

〈jm, jm′ 〉 = δmm′(−1)m(m+1)/2 m,m′ = 0, 1, . . . (85)
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and

V−jm =
[
(1− pm+1)uq2ξ

1+ q
] 1

2

jm+1 Hjm = −
(
ξ + m

2

)
jm

V+jm =
[
(1− pm)uq2ξ

1+ q
] 1

2

jm−1.

(86)

We haveV+ = (V−)∗ andH ∗ = H . We defineH ′ = ξI +H .
For this representation we consider the matrix elements

(e−, E+) : ep(βV−)Ep(αV+)jm =
∑
m′
S ′(ξ)m′m(α, β)jm′

S ′(ξ)m′m(α, β) = (β)m
′−m
(
uq2ξ

1+ q
) 1

2 (m
′−m)√

(pm+1;p)m′−m
(p;p)m′−m

× 2φ1

(
p−m, 0

pm
′−m+1

;p; −αβp
mu

q−2ξ (1+ q)

)
.

(87)

Now we form the tensor product representation

↓′ξ [0, u]⊗ ↑′λ [−u, 0] ∼= [0, 0] (88)

of [0, 0] using the definition (66). The invariant operator isC = F+F−. Note thatF ∗+ = F−,
L∗ = L and that a basis for the indefinite inner product space is{jm⊗ en, m, n = 0, 1, . . .}
where

〈jm ⊗ en, jm′ ⊗ en′ 〉 = 〈jm, jm′ 〉〈en, en′ 〉 = δmm′δnn′(−1)
1
2 (m+n)(m−n+1). (89)

To decompose this representation we compute the common eigenfunctions ofL and
C. Clearly, eigenfunctions ofL with eigenvalue−λ − ξ + α, α > 0 are just those linear
combinations of the basis vectorsJ αm = jm ⊗ en where n = 2α + m, m = 0, 1, . . . .
For α < 0, they are linear combinations of the basis vectorsJαm = jm ⊗ en where
n = 2α +m, n = 0, 1, . . . . Note that

‖J αm‖2 ≡ 〈J αm, J αm〉 =
(−1)[α/2]

2

[
1− (−1)α + (−1)m + (−1)α+m

]
. (90)

Taking the caseα > 0 and applyingC to the orthogonal set{J αm} we find

(1+ q)q2(λ−ξ)

u
CJαm = (−1)αpmqα/2+

1
2
[
(1− pm+1)(1− pα+m+1)

] 1
2 J αm+1

+pmqα/2− 1
2
[
(1− pm)(1− pα+m)] 1

2 J αm−1

−pm [qα(i − pm+1)+ (−1)α(1− pα+m)] J αm. (91)

The operatorC is self-adjoint. If we introduce the spectral transform of this operator so that
C corresponds to multiplication by the transform variablex, then (91) takes the form of a
three-term recurrence relation for orthogonal polynomialsJ αm(x) of orderm in x. Indeed,
comparing (91) with the three-term recurrence relation for the continuous Askey–Wilson
polynomials we see that we get a match for a special case of the littleq-Jacobi polynomials

pn(x; a, b;Q) = 2φ1

(
Q−n, abQn+1

aQ
;Q, xQ

)
(92)
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whereQ = p, a = pα andC ∼ xuq2(ξ−λ)(−1)α+1/(1+ q). Making the identification

J αm(x, s) =
[
q−m(α+1)(pα+1;p)∞(pα+1;p)m

(p;p)m

] 1
2

pm(x;pα, 0;p)sα (93)

we have

〈J αm, J α
′

m 〉 = δαα′
(−1)[α/2]

2

[
1− (−1)α + (−1)m + (−1)α+m

]
(94)

where

〈f (x)sα, g(x)sα′ 〉 ≡ δαα′(−1)α(α−1)/2
∞∑
y=0

py(α+1)

(p;p)y f (p
y)g(py). (95)

For fixed odd integerα, this defines a true inner product for littleq-Jacobi polynomials;
for evenα it is just a bilinear product since the discrete measure can be negative. It is not
dificult to verify that on this basis the superalgebra acts as follows:

F+ = qξ−λ
√

u

q + 1
sRs F− = qξ−λ

√
u

q + 1

x

s

L = −(ξ + λ)+ 1
2s∂s

(96)

whereRsG(s) = G(−s). For fixedx this representation is equivalent to the representation
(ω) = (

qξ−λ
√
xu/(q + 1)

)
of [0, 0], as studied in section 2. Thus we have derived the

decomposition

↓′ξ [0, u]⊗ ↑′λ [−u, 0] ∼= ⊕
∞∑
y=0

(
qξ−λ

√
pyu

q + 1

)
[0, 0]. (97)

Again, the functionsJ hm(x, s) are essentially the Clebsch–Gordan coefficients for this
decomposition; the orthogonality and completeness relations for the corresponding little
p-Jacobi polynomials are the unitarity conditions for the CG coefficients. Also, the
decomposition (97) can be used to obtain an identity relating the matrix elements (83), (87)
and the adjoint of (30). We can compute the matrix element

T ′m′n′,mn(α, β) = 〈ep(βF−)Ep(αF+)jm ⊗ en, jm′ ⊗ en′ 〉
in two different ways. On one hand we have the representation

T ′m′n′,mn(α, β) = 〈ep(βF−)Ep(αF+)J hm, J h
′

m′ 〉

= 〈U ′(·)h′h(α, β)Kh
m(·),Kh′

m′(·)〉 (98)

whereJ hm(x, s) = Kh
m(x)s

h, U ′(ω)h′h(α, β) = x(h−h
′)/2L′h′h(α, β), n = h+m, n′ = h′ +m′ and

theL′ are essentially the adoint matrix elements to (30):

L′(x)h′h(α, β) =
(
βqξ−λ

√
ux/(1+ q))h−h′
(p;p)h−h′

[
1φ1

(
0

ph−h
′+1 ;p,

iαβux(−1)h+1

q2λ−2ξ (1+ q)
)

1− i
2

+ 1φ1

(
0

ph−h
′+1 ;p, (−1)h

iαβq2ξ−2λux

1+ q
)

1+ i
2

]
. (99)



Tensor products of q-superalgebra representations 7163

On the other hand

2T ′m′n′,mn(α, β) = S ′(ξ)m′m(αq−λ+n
′/2, βq−λ+n

′/2)T ′(e−,E+),λn′n (α(−1)mqξ+m/2, β(−1)mqξ+m/2)

+ S ′(ξ)m′m(αq−λ+n
′/2, βq−λ+n

′/2)T ′(e−,E+),λn′n (α(−1)mqξ+m/2,−β(−1)mqξ+m/2)

+ S ′(ξ)m′m(−αq−λ+n
′/2, βq−λ+n

′/2)T ′(e−,E+),λn′n (α(−1)mqξ+m/2, β(−1)mqξ+m/2)

− S ′(ξ)m′m(−αq−λ+n
′/2, βq−λ+n

′/2)

× T ′(e−,E+),λn′n (α(−1)mqξ+m/2,−β(−1)mqξ+m/2). (100)

For our last example we consider another degenerate case of the tensor product with
some special features, a representation of theq-superoscillator algebra [0,−u] of the form
ω′[0, 0]⊗↑′′λ[0,−u]. Here the family of algebraically irreducible representations (bounded
below) ↑′′λ, of the q-superalgebra [0,−u], where u > 0, is defined as follows. An
orthonormal basis for the representation space is{en : n = 0, 1, . . .} where

V−en =
[
(1− pn)uq2λ−n+1

1+ q
] 1

2

en−1 Hen =
(
− λ+ n

2

)
en

V+en =
[
(1− pn+1)uq2λ−n

1+ q
] 1

2

en+1.

(101)

This Hilbert space representation satisfiesV+ = (V−)∗, H ∗ = H . We defineH ′ = λI +H .
The following matrix elements of↑′′λ:

e−q(βV−)E−q(αV+)en =
∞∑
n′=0

T ′′(e−,E+)n′n (α, β)en′ (102)

are given by

T ′′(e−,E+)n′n (α, β) = (−1)(n
′−n)(n′−n+1)/2

√
(p;p)n′
(p;p)n

(
−
√

u

1+ q α
)n′−n

q(n
′−n)(7λ+n′−3n−1)/4

(p;p)n′−n

×2φ1

(
pn
′+1, 0

pn
′−n+1 ;p; (−1)n−n

′
αβu

qn−2λ(1+ q)

)
(103)

where|q2λ−nαβu/(1+ q)| < 1.
The family of algebraically irreducible representationsω′, of theq-superalgebra [0, 0],

is defined by the action (12) on the basis{fm}, except that here we have an indefinite inner
product

〈fm, fm′ 〉 = δmm′(−1)m(m+1)/2 m,m′ = 0,±1, . . . . (104)

Thus V+ = (V−)∗ andH ∗ = H . We defineH ′ = H . The matrix elements are given
by (29).

Now we form the tensor product representation

ω′[0, 0]⊗ ↑′′λ[0,−u] ∼= [0,−u] (105)

of [0,−u] using definition (66). The invariant operator isC = F+F− − uq−2L/(1+ q−1).
Note thatF ∗+ = F−, L∗ = L and that a basis for the indefinite inner product space is
{fm ⊗ en, n,±m = 0, 1, . . .} where

〈fm ⊗ en, fm′ ⊗ en′ 〉 = 〈fm, fm′ 〉〈en, en′ 〉 = δmm′δnn′(−1)
1
2m(m+1). (106)
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Again, to decompose this representation we compute the common eigenfunctions of
L and C. Clearly, eigenfunctions ofL with eigenvalue−λ + α/2 are just those linear
combinations of the basis vectorsJ αn = fm⊗ en wherem = α−n, n = 0, 1, . . . . Note that

‖J αn ‖2 ≡ 〈J αn , J αn 〉 = (−1)
1
2 (α−n)(α−n+1). (107)

Applying C to the orthogonal set{J αn } we find

CJαn = −q
1
2 (n−α+1)ω

[
(1− pn+1)u

1+ q
] 1

2

J αn+1+ (−1)n+αq
1
2 (n−α)ω

[
(1− pn)u

1+ q
] 1

2

J αn−1

+pn [−q2λ−α+1u+ (−1)αω2q−2λ
]
J αn . (108)

The operatorC is self-adjoint. If we introduce the spectral transform of this operator so that
C corresponds to multiplication by the transform variablex, then (108) takes the form of a
three-term recurrence relation for orthogonal polynomialsJ αn (x) of orderm in x. Indeed,
comparing (108) with the three-term recurrence relation for the polynomials

Pn(x, z) = 2φ1

(
Q−n, 1/x

0
;Q,−xQ/z

)
(109)

xPn = zQnPn+1+ (1− z)QnPn + (1−Qn)Pn−1 (110)

we see that we get a match providedQ = p, zα = q4λ+1u/(1 + q)ω2pα and C ∼
xω2q−2λ(−1)α. Making the identification

J αn (x, s) =
qn(n−1)/4

√
(p;p)n

[
q4λ+1u

(1+ q)ω2qα

]n/2
Pn(x, zα)s

α(−1)n(n+1)/2 (111)

we have

〈J αn , J α
′

n′ 〉′ = δαα′δnn′(−1)(α−n)(α−n+1)/2 (112)

where

〈f (x)sα, g(x)sα′ 〉′ ≡ δαα′ (−1)α(α+1)/2(1+ zα)
zα(p,−1/zα,−zα;p)∞

×
( ∞∑
k=0,x=pk

x(px;p)∞
(
− xp
zα
;p
)
∞
f (x)g(x)

−
∞∑

k=0,x=−zαpk
x(px;p)∞

(
− xp
zα
;p
)
∞
f (x)g(x)

)
. (113)

This is just a bilinear product, since the discrete measure can be negative. It is not difficult
to verify that on this basis the superalgebra acts as follows:

F+ = ωq−λs
(
x − q4λu

(1+ q)ω2
T −1
s Rs

)
F− = q−λ ω

s
Rs

L = −λ+ 1
2s∂s

(114)

whereRsG(s) = G(−s).
For fixedx = z0p

−α0 this representation is equivalent to the irreducible representation
↑′′λ−α0/2

of [0,−u], as given in (101). For fixedx = pk the representation is equivalent
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to an irreducible representationRk(ω2, qλ), unbounded above and below. Thus we have
derived the decomposition

ω′[0, 0]⊗ ↑′′λ[0,−u] ∼= ⊕
∞∑

α0=−∞
↑′′λ−α0/2 [0,−u] ⊕

∞∑
k=0

Rk(ω
2, qλ)[0,−u]. (115)

Here the reduced basis corresponding to the representation↑′′λ−α0/2
, equation (101), is

given by

e(α0)
n (x, s) = (−1)n(n+1)/2+α0n

δ(x + zα0)

qn(n+1)/4

√
(p;p)n(−z−1

α0
;p)∞|zα0|n sα. (116)

We have

〈e(α0)
n , e

(α′0)
n′ 〉′′ = δnn′δα0α

′
0
(−1)α0(α0+1)/2 sign(−z−1

α0
;p)∞.

The reduced basis corresponding to representationRk(ω
2, qλ) is given by

g(k)α (x, s) =
δ(x − pk)qk(k−1)/4

|z0|k/2q−αk/2
√
(p;p)k|(−zαp−k;p)∞| (117)

where

〈g(k)α , g(k
′)

α′ 〉′′ = δαα′δkk′
(−1)k+(α+k)(α+k+1)/2

sign(−zαp−k;p)∞ .

The superalgebra action is

F+g(k)α = (−1)kqk/2

√∣∣∣∣ω2q−2λ − q
2λp−k−α

1+ q
∣∣∣∣ sign

(
ω2− q

4λp−k−α

1+ q
)
g
(k)

α+1

F−g(k)α = (−1)αqk/2

√∣∣∣∣ω2q−2λ + q
2λ+1p−k−α

1+ q
∣∣∣∣ g(k)α−1

Lg(k)α =
(−λ+ 1

2α
)
g(k)α

(118)

wherek,±α = 0, 1, . . . .
Again, the functions J αn (x, s) are the Clebsch–Gordan coefficients for this

decomposition. As before, the decomposition (115) can be used to obtain an identity
relating the matrix elements of the ‘group’ operators with respect to the tensor product and
the reduced bases.
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